Stationary Response of a Kind of Nonlinear Stochastic Systems with Variable Mass and Fractional Derivative Damping
نویسندگان
چکیده
Viscoelasticity and variable mass are common phenomena in Micro-Electro-Mechanical Systems (MEMS), could be described by a fractional derivative damping stochastic process, respectively. To study the dynamic influence cased viscoelasticity mass, stationary response of kind nonlinear systems with variable-mass derivative, is investigated this paper. Firstly, an approximately equivalent system studied presented according to Taylor expansion technique. Then, based on averaging energy envelope, corresponding Fokker–Plank–Kolmogorov (FPK) equation deduced, which gives approximated analytical solution response. Finally, oscillator proposed numerical simulations. The compared Monte Carlo solution, verify effectiveness obtained results.
منابع مشابه
Stochastic Response of Duffing Oscillator with Fractional or Variable-order Damping
This paper introduces a numerical technique for the estimation of stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise excitation. The Wiener-Hermite expansion is integrated with the Grunwald-Letnikov approximation in case of fractional order damping and with Coimbra approximation in case of variableorder damping. The numerical solver...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولSolvability of Nonlinear Sequential Fractional Dynamical Systems with Damping
In this paper, we are concerned with the solvability for a class of nonlinear sequential fractional dynamical systems with damping infinite dimensional spaces, which involves fractional Riemann-Liouville derivatives. The solutions of the dynamical systems are obtained by utilizing the method of Laplace transform technique and are based on the formula of the Laplace transform of the Mittag-Leffl...
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6060342